

Jenn Riley IU Digital Library Program June 22, 2004

Workshop schedule

Digitization

- Technical overview
- Setting specifications
- o Planning
- Workflow
- Delivery
- Metadata

Digitization

Technical overview

- Setting specifications
- Planning
- Workflow

Technical overview

- Analog to digital conversion
- Resolution
- Bit depth
- Color representation
- Reflectivity and polarity
- Compression

Analog to digital conversion

- Image is converted to a series of pixels laid out in a grid
- Each pixel has a specific color, represented by a sequence of 1s and 0s
- Pixel-based images are called "raster" images or "bitmaps"

Resolution (1)

- Often referred to as "dpi" or "ppi"
- RATIO of number of pixels captured per inch of original photo size
 - 8x10 print scanned at 300ppi = 2400 x
 3000 pixels
 - 35mm slide (24x36mm!) scanned at
 300ppi ≈ 212 x 318 pixels

Resolution (2)

- "Spatial resolution" refers to pixel dimensions of image, e.g., 3000 x 2400 pixels
- Flatbed and film scanners have a fixed focus, so they know how big the original is; digital cameras don't

Resolution (3)

Optical vs. interpolated

- Optical is the number of sensors in the scanning array – what the scanner actually "sees"
- Interpolated is a higher resolution the number of pixels the software can make up based on what the scanner actually saw
- Don't set a scanner to use higher than its optical resolution

Bit depth

- Refers to number of bits (binary digits, places for zeroes and ones) devoted to storing color information about each pixel
- 1 bit (1) = 2¹ = 2 shades (black & white)
- 2 bit (01) = 2² = 4 shades
- 4 bit (0010) = 2⁴ = 16 shades
- 8 bit (11010001) = 2⁸ = 256 shades

Color representation

RGB

- Scanners generally have sensors for Red, Green, and Blue
- Each of these "channels" is stored separately in the digital file
- 8 bits for each of 3 channels = 24 bit color
- CMYK (Cyan, Magenta, Yellow and Black) is used for high-end "pre-press" printing purposes

Reflectivity and polarity

	Positive	Negative
Reflective	Paper Photographic prints	
Transmissive	Slide film	Negative film

- Makes files smaller for storage
- Files must be decompressed for viewing
- Lossless
- Lossy
 - "visually lossless"

Technical questions?

- Analog to digital conversion
- Resolution
- Bit depth
- Color representation
- Reflectivity and polarity
- Compression

Digitization

- Technical overview
- Setting specifications
- Planning
- Workflow

Setting specifications

- Capture once, use many
- Determine purpose
- Resolution
- Bit depth & color
- Image processing
- Master file formats
- Microfilm

Capture once, use many

- Create master image when scanning
 - Capture all "important" information
 - Meets all foreseeable needs
 - For long-term storage and later use
- Create derivatives for specific uses later
 - Web delivery
 - Printing
 - Publication

Determine purpose

- Define what "important" information is
 - Not always "what people can see"
- Materials of artifactual value
 - Manuscript
 - o Rare
 - Annotations from collector
- Materials whose musical content is primary consideration
 - Mass-printed editions
 - Previously microfilmed materials

Determining resolution (1)

- Higher is not always better
- Scan at highest resolution necessary to achieve your stated purpose, no higher

chart from Cornell's online digital imaging tutorial: http://www.library.cornell.edu/preservation/tutorial/conversion/conversion-03.html

Determining resolution (2)

- For music, size of notation should generally determine resolution
- Can calculate necessary resolution from size of smallest detail
 - Capture smallest detail with 2 pixels (Kenney)
 - Spaces between beams generally smallest detail in musical notation
 - ppi = 2px / (size of smallest detail in mm x .03937)
- Rules of thumb can also apply

Resolution comparison (1)

Resolution comparison (2)

Compare for yourself

- resolution/color/
- resolution/gray_big/
- resolution/gray_small/
- resolution/manuscript/

Bit depth & color (1)

- Artifact
 - 24-bit color
- Content
 - 8-bit grayscale (usually not 1-bit bitonal)
 - Contrast

Bit depth & color (2)

1 bit (black & white)

4 bit (16 colors)

2 bit (4 colors)

Conference on Music and Technology in the Liberal Arts Environment

Compare for yourself

- bitdepth/artifact
- bitdepth/content
- bitdepth/questionable
- bitdepth/contrast

Image processing

- Generally avoided for master images
- "Clean-up" sometimes OK
- Color balance, cropping, etc., can and usually should be done when creating derivatives
- Descreening sometimes done, but for musical materials high enough scan resolution makes it not generally necessary

Master file formats

TIFF (uncompressed)

- Virtually unanimously recommended by digital imaging best practices
- "De facto" standard

JPEG2000

- ISO/IEC IS 15444-1 | ITU-T T.800
- Not patent-free
- Up-and-coming but not quite there yet
- Supports embedded metadata
- Uses wavelet-based compression

Lossy-compressed every time they are saved

low compression, high quality

high compression, low quality

A word about microfilm

- Can be positive or negative
- Resolution depends on reduction of original
- The "600 dpi" myth
- Most is "high-contrast" severely limiting tonal depth possible in digital images
- LC and others chose bitonal scanning of musical materials from microfilm

Specifications questions?

- Capture once, use many
- Determine purpose
- Resolution
- Bit depth & color
- Image processing
- Master file formats
- Microfilm

Let's practice!

Digitization

- Technical overview
- Setting specifications
- Planning
- Workflow

Planning

- Digitization in context
- Choosing equipment
- Filenaming
- Documentation
- Testing
- Other considerations

Digitization in context

- Collection development policies still apply
- Can be one of the easier parts of digital projects but still requires careful planning
- You don't want to have to re-do digitization later – do it right the first time!
- If it's done poorly your whole project will suffer

Choosing equipment

Scanner

- Scan area
- Optical resolution
- O Dynamic range (from Kenney & Rieger, *Moving Theory into Practice*, p. 38)
 - newsprint: 0.9
 - printed material: 1.5
 - photographic prints: 1.4 2.0
 - negative films: 2.8
 - high grade transparencies: 3.0 4.0

Monitor: use CRT, not LCD

Filenaming

- Can often make use of existing ID numbers
- More human-readable if parts (ID, copy, page) are delimited
- BUT...
 - ISO9660 standard for CD recording requires 8.3 filenames

Document everything

But really...

- Document everything!
- Scanner model
- Scanning software & version
- Software settings
- Exhaustive, step-by-step procedures
 - Digitization
 - Quality control
- Rationale for all decisions & specs
- High-level overview for sharing

Testing

- Don't blindly follow any specific recommendation – make sure it works for you
- For both digitization and quality control
- Useful to divide materials into homogeneous groups, with different specifications for each

Other considerations

- Scan from earliest generation practical
- Can use color bars or rulers for future reference
- Train scanner operators in correct handling of materials

Planning questions?

- Digitization in context
- Choosing equipment
- Documentation
- Testing
- Other considerations

Digitization

- Technical overview
- Setting specifications
- Planning
- Workflow

Workflow

- Color management
- Quality review
- Storage
- Imaging software
- Outsourcing

Color management (1)

- Ensure the color captured and displayed on any device is "accurate"
- "Device-independent" color
- ISO 3664 describes standard graphic viewing conditions

Color management (2)

- All devices should be characterized with ICC profiles
 - o monitors
 - o scanners
 - o printers
- Creating your own preferable to using "canned" profiles
- Profiling software from Monaco Systems; also included in high-end software

Color management (3)

- Many suggest embedding ICC profiles in master images
- Set up Photoshop to use that profile and to warn you when profiles are missing or different

	Color Settings	×
	Settings: DMIC April 2003	
	Advanced Mode	
	Working Spaces	Reset
	RGB: sRGB IEC61966-2.1	Lord
	CMYK: U.S. Web Coated (SWOP) v2	
	Gray: Gray Gamma 2.2	<u>S</u> ave
	Spot: Dot Gain 20%	Preview
	Color Management Policies	<u>, en reg</u> ien
	RGB: Preserve Embedded Profiles	
	CMYK: Preserve Embedded Profiles	
D	Gray: Preserve Embedded Profiles 💽	
	Profile Mismatches: 🔽 Ask When Opening 🔽 Ask When Pasting	
ć	Missing Profiles: 🔽 Ask When Opening	
	Conversion Options	
	Engine: Adobe (ACE)	
	Intent: Relative Colorimetric	
ý	▼ Use Black Point Compensation □ Use Dither (8-bit/channel images)	
	Advanced Controls	
nt	Desaturate Monitor Colors By: 20 %	
///	Blend RGB Colors Using Gamma: 1.00	
	Description	
	DMIC April 2003: Color settings for the IU Digital Media and Image Center	
Conterence of		
LIDE.		

Quality review

- A consistent quality review process is absolutely essential
- Objective
- Subjective

Objective image review (1)

- Pixel dimensions
- Resolution & unit
- Bit depth
- Compression
- Byte order
- Structure of filename
- Embedded color profile

Objective image review (2)

- A significant amount of information stored in TIFF "Image File Directory"
 - Check in graphical image software
 - Check with <u>command-line tools</u>
- Checks can be automated
 - Tiffdump/Tiffinfo (Libtiff), ImageMagick
 - Perl or other scripting/programming language

Subjective image review (1)

- Filename matches the image
- Scanning artifacts
- Cropping
- Orientation
- Skew & border
- Physical matter obscuring image

Let's look at examples!

Subjective image review (2)

Storage (1)

- File size calculations (uncompressed)
 - (height (in) x width (in) x bit depth x dpi²) / 8
 - 1 Kilobyte (KB) = 1,024 bytes
- A long-term view is essential
- Multiple copies always a good idea

Storage (2)

- Hard disk
- Other optical
 - O CD(-R/-RW/+R/+RW)
 - o DVD(-R/-RW/+R/+RW)

Tape

Imaging software

- Adobe Photoshop
- IfranView
- GIMP
- ImageMagick
- LibTiff
- Silverfast

A word about outsourcing

- Still requires management and knowledge
- Faster production possible
- No equipment investment required
- Different funding model

Workflow questions?

- Color management
- Quality review
- Storage
- Imaging software
- Outsourcing

Delivery

- Web delivery files
- Printing files
- Derivative creation
- Delivery systems
- Some online collections
- Other ways to share
- Other issues

Choosing Web file formats

- Viewable by target users
 File sizes appropriate for
- File sizes appropriate for network delivery
- Support for multi-page items

Web delivery file formats

File format	Commonly viewable via the Web	File size	Multi-page support
JPEG	\checkmark	\checkmark	
GIF	\checkmark	\checkmark	
PNG	\checkmark	\checkmark	
TIFF		depends	\checkmark
PDF	V -		\checkmark
DjVu		\checkmark	\checkmark
JPEG2000		\checkmark	\checkmark

Web delivery image specs

Bit depth

- Often decided by file format choice
- Generally follows from master file bit depth
- Pixel dimensions
 - Adequately show notation
 - Fit image in window
 - Thumbnails not so useful for music

Dimensions

	200dpi	150dpi	100dpi
5.5" x 7.5"	1100 px x 1500 px	825 px x 1125 px	550 px x 750 px
miniature score	will not fit horizontally on many common screen resolutions	adequate for most purposes, but still requires horizontal scrolling for smaller screen resolutions	will fit horizontally on all common screen resolutions
9" x 12" score or	1800 px x 2400 px	1350 px x 1800 px	900 px x 1200 px
sheet music	will not fit horizontally on any common screen resolution	requires horizontal scrolling for most common screen resolutions	will fit horizontally on all but the smallest common screen resolutions

Printing file specs

- Everyone wants printable versions!
- Pixel dimensions
 - Exactly as big as the page
 - Scalable formats nice
- Bit depth
 - For content-focused materials, bitonal is best
 - For artifact-focused materials, stay with 24-bit color

Printing file formats (1)

File format	Advantages	Disadvantages
JPEG	Wide support	No multi-page support Difficult to size properly for multiple printer types JPEG compression not good for printing technology Doesn't handle bitonal images
GIF	Wide support	No multi-page support Difficult to size properly for multiple printer types
PNG	Wide support	No multi-page support Difficult to size properly for multiple printer types

Printing file formats (2)

File format	Advantages	Disadvantages
TIFF	Very flexible Can provide any level of quality wanted	Multi-page images not supported in all software Difficult to size properly for multiple printer types
PDF	Multi-page support Scalable sizing for output page size Serves as a wrapper for any sort of image file Can handle multiple bit depths	Extremely large file sizes when made from page images Software common but not pervasive
DjVu	Multi-page support Scalable sizing for output page size	Software not pervasive
JPEG2000	Multi-page support Scalable sizing for output page size Can package metadata with images	Software not pervasive

Derivative creation

- Create when scanning
 - Adds time to workflow
 - Can lead to inconsistent quality
- Batch creation
 - Photoshop "batch actions"
 - Irfanview "batch conversion"
 - ImageMagick and other scriptable software

Systems

- ContentDM
- Greenstone
- DLXS/XPAT
- ILS modules
 - ENCompass (Endeavor)
 - Hyperion (Sirsi)
 - MetaSource (III)

Some online collections

- Music for the Nation
- Indiana University Sheet Music
- University of Chicago Chopin Early Editions

Other ways to share

- Union catalogs
- OAI Sheet Music Harvester
- RLG Cultural Materials

Other issues

- Persistent URLs
- Symbolic notation
 - A digitized image is like a photograph
 - Conversion from image to notation format is necessary
 - OMR exists but isn't very effective
 - "Re-keying" commonly used
 - Not very much research in this area

Delivery questions?

- Web delivery files
- Printing files
- Derivative creation
- Delivery systems
- Some online collections
- Other ways to share
- Other issues

Metadata

- Descriptive metadata
- Technical metadata
- Structural metadata
- There are others too...

Descriptive metadata

- Infinite options
 - MARC
 - Dublin Core
 - Custom databases
- Create as much as you can afford
Technical metadata

- Essential!
- For fixing quality problems
- For long-term maintenance of files
- NISO draft standard Z39.87: Technical Metadata for Digital Still Images
- Some embedded in TIFF image, some recorded elsewhere

Structural metadata

- For creating a logical structure between digital objects
 - Multiple copies of same bibliographic item
 - Multiple pages within item
 - Multiple sizes of each page

Metadata questions?

- Descriptive metadata
- Technical metadata
- Structural metadata
- Others?

More information

These presentation slides & other workshop materials:

http://www.dlib.indiana.edu/~jenIrile/presentations/musictech/

- A plug for my article: <u>http://www.dlib.indiana.edu/~jenlrile/oclc/oss.pdf</u>
- jenlrile@indiana.edu