Digital Imaging of Photographs

> Jenn Riley IU Digital Library Program September 19, 2003

What we'll cover

- Introduction
- Technical overview
- Best practices for capture
- Workflow considerations

What we'll cover

- Introduction
- Technical overview
- Best practices for capture
- Workflow considerations

Digitization in context

- Can be one of the easier parts of digital projects but still requires careful planning
- If it's done poorly your whole project will suffer
- Can be done in-house or outsourced

Types of photographic materials

- Reflective
 - o Prints
- Transparent (film)
 - Negative
 - Positive
- All come in various sizes

What we'll cover

- Introduction
- Technical overview
- Best practices for capture
- Workflow considerations

Technical overview

- Analog to digital conversion
- Resolution
- Bit depth
- Color
- Compression

Analog to digital conversion

- Image is converted to a series of pixels laid out in a grid
- Each pixel has a specific color, represented by a sequence of 1s and 0s
- Pixel-based images are called "raster" images or "bitmaps"

Resolution (1)

- Often referred to as "dpi" or "ppi"
- RATIO of number of pixels captured per inch of original photo size
 - 8x10 print scanned at 300ppi = 2400 x
 3000 pixels
 - o 35mm slide (24x36mm!) scanned at 300ppi ≈ 212 x 318 pixels

Resolution (2)

- "Spatial resolution" refers to pixel dimensions of image, e.g., 3000 x 2400 pixels
- Flatbed and film scanners have a fixed focus, so they know how big the original is; digital cameras don't

Resolution (3)

Optical vs. interpolated

- Optical is the number of sensors in the scanning array – what the scanner actually "sees"
- Interpolated is a higher resolution the number of pixels the software can make up based on what the scanner actually saw
- Don't set a scanner to use higher than its optical resolution

Bit depth (1)

- Refers to number of bits (binary digits, places for zeroes and ones) devoted to storing color information about each pixel
- 1 bit (1) = 2^1 = 2 shades (black & white)
- 2 bit (01) = 2² = 4 shades
- 4 bit $(0010) = 2^4 = 16$ shades
- 8 bit (11010001) = 2⁸ = 256 shades

Bit depth (2)

1 bit (black & white)

2 bit (4 colors)

4 bit (16 colors)

8 bit (256 colors)

Color

RGB

- Scanners generally have sensors for Red, Green, and Blue
- Each of these "channels" is stored separately in the digital file
- 8 bits for each channel = 24 bit color
- CMYK (Cyan, Magenta, Yellow and Black) is used for high-end "pre-press" printing purposes

Compression

- Makes files smaller for storage
- Files must be decompressed for viewing – this takes time
- Lossless
- Lossy
 - "visually lossless"

Technical questions?

- Analog to digital conversion
- Resolution
- Bit depth
- Color

What we'll cover

- Introduction
- Technical overview
- Best practices for capture
- Workflow considerations

Best practices for capture

- General considerations
- Resolution
- Color
- Image processing
- File formats

General considerations

Determine purpose

- Capture once, use many times
 - Create "master" image when scanning
 - Create "derivatives" for specific uses later
- Scan from earliest generation practical
- Some imaging programs use color bars or rulers for future reference
- Train scanner operators in correct handling of materials

Determining resolution (1)

- Charts can be good starting points
 - Western States handout
 - Other standards/best practices listed on bibliography at end of presentation
- Current thinking is that master files for photographic materials should be 3000-5000 pixels on their longest side

Determining resolution (2)

- Higher is not always better
- Scan at highest resolution necessary to achieve your stated purpose, no higher

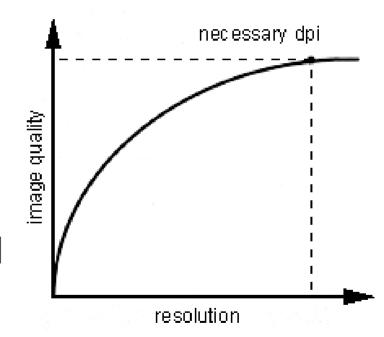
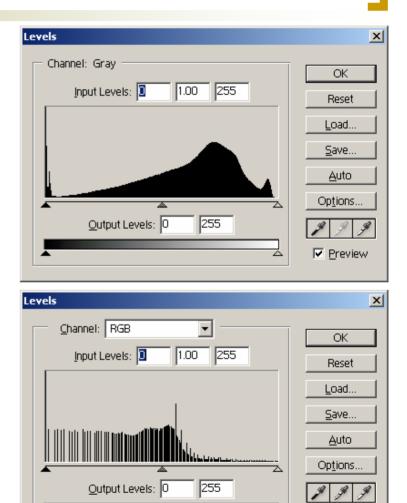


chart from Cornell's online digital imaging tutorial:

<http://www.library.cornell.edu/preservation/tutorial/conversion/conversion-03.html>

Resolution comparison

600dpi vs. 300dpi


Color

- Match current photo or match original scene
- Final master images should be 8 bits per channel (8-bit grayscale, 24-bit RGB); some specialized projects using higher bit depths
- Any color adjustments should be done in scanning software before final scan is done
- Use almost the full tonal range; avoid "clipping"

Histograms

Levels	×
Channel: RGB Input Levels: 1.00 255	OK Reset Load Save Auto Options ✓ Preview

good (dark image)

Preview

 $\overline{\Delta}$

Image processing

- Color balance, cropping, etc., can be done when creating derivatives
- Generally avoided for master images
 - Descreening for halftoned images possible exception

halftoned

descreened

File formats

Master

TIFF (uncompressed)

Derivative

- JPEG (web)
- Zoomable formats (specialized uses)

JPEG compression

- Lossy-compressed every time they are saved
- No standard scale
 - Photoshop: 0 to 12 (low to maximum)
 - ImageMagick: 1 to 100, default 75

low compression, high quality

high compression, low quality

Best practice questions?

- General considerations
- Resolution
- Color
- Image processing
- File formats

What we'll cover

- Introduction
- Technical overview
- Best practices for capture
- Workflow considerations

Digital imaging workflow

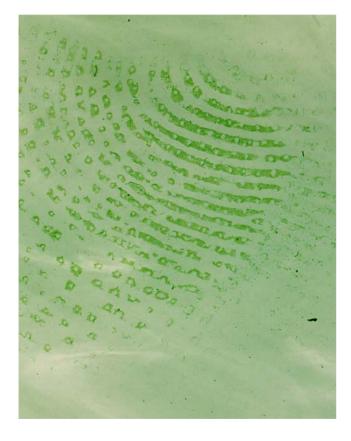
- Planning phase
- Production phase
- Post-production phase

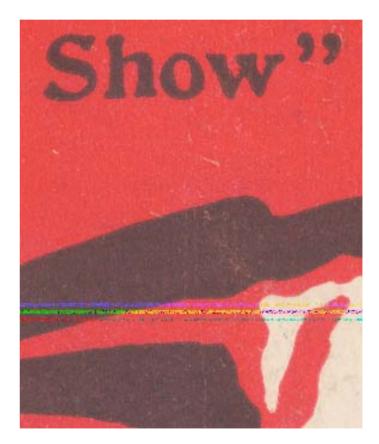
Planning phase

- Define purpose of imaging project
- Define master image specifications
- Select scanning equipment
- Develop and test procedures for digitization
- Develop and test procedures for quality review
- Determine technical metadata to be recorded
- DOCUMENT

Choosing equipment

Scanner


- Resolution
- Dynamic range
 - photographic prints: 1.4 2.0
 - negative films: 2.8
 - commercial grade colored slides: 2.8 3.0
 - high grade transparencies: 3.0 4.0
- Monitor: use CRT, not LCD


dynamic range chart from Kenney & Rieger, Moving Theory into Practice, p. 38

Quality review

- A consistent quality review process is *absolutely* essential
- Objective
 - o pixel dimensions
 - o resolution
 - o bit depth
- Subjective
 - scanning artifacts
 - cropping
 - o orientation

Subjective image review

TEST!

- Don't blindly follow any specific recommendation – make sure it works for you
- Drawings, engravings, maps, printed text, handwritten text, musical notation, etc., all require different approaches

Metadata and documentation

- Essential!
- For fixing quality problems
- For long-term maintenance of files
- NISO draft standard: Technical Metadata for Digital Still Images

Production phase

- Train employees in digitization and handling procedures
- Ongoing digitization
- Ongoing quality review
- Ongoing metadata creation
- Periodic equipment color characterization/calibration

Color management (1)

- ISO 3664 describes standard graphic viewing conditions
- All devices should be characterized with ICC profiles
 - o monitors
 - o scanners
 - o printers
- Creating your own preferable to using "canned" profiles
- Profiling software from Monaco Systems; also included in high-end scanning software

Color management (2)

- Embed ICC profiles in master images
- Set up Photoshop to use that profile and to warn you when profiles are missing or different

Color Settings	×
Settings: DMIC April 2003	ОК
Advanced Mode	
Working Spaces	Reset
RGB: sRGB IEC61966-2.1	Land L
CMYK: U.S. Web Coated (SWOP) v2	<u>L</u> oad
<u>G</u> ray: Graγ Gamma 2.2	<u>S</u> ave
Spot: Dot Gain 20%	✓ Preview
Color Management Policies	1• 110 <u>v</u> iew
RGB: Preserve Embedded Profiles	
CMYK: Preserve Embedded Profiles	
Gray: Preserve Embedded Profiles	
Profile Mismatches: 🔽 Ask When Opening 🔽 Ask When Pasting	
Missing Profiles: 🔽 Ask When Opening	
Conversion Options	
Engine: Adobe (ACE)	
Intent: Relative Colorimetric	
Use Black Point Compensation 🔲 Use Dither (8-bit/channel images)	
Advanced Controls	
Desaturate Monitor Colors By: 20 %	
Blend RGB Colors Using Gamma: 1.00	
Description	
DMIC April 2003: Color settings for the IU Digital Media and Image Center	

Post-production phase

- Store master images safely
- Create derivatives
- Review process for areas of improvement

Workflow questions?

- Planning phase
- Production phase
- Post-production phase

Other questions?

- Technical overview
- Best practices for capture
- Workflow considerations
- Other?

More information

- These presentation slides: http://www.dlib.indiana.edu/workshops/bbfall2003.htm>
- Digital imaging standards and best practices and how the IU DLP uses them: http://www.dlib.indiana.edu/dmic/general/
- Cornell digital imaging tutorial: <http://www.library.cornell.edu/preservation/tutorial/contents.html>
- jenlrile@indiana.edu